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Abstract: In nanoscale technology nodes Radiation induced multiple bit upsets are the major reliability. Functionality 

of the mapped design is permanently affected by the occurrence of such errors in the configuration frames of a field 
programmable gate arrays. Permanent effect of these errors can be avoided by periodic configuration scrubbing 

combined with a low cost error correction scheme is an efficient approach. In this paper, we present a low-cost error-

detection code to detect MBUs in configuration frames as well as a generic scrubbing scheme to reconstruct the 

erroneous configuration frame based on erasure codes. The proposed scheme does not require any modification to the 

FPGA architecture. Implementation of  the this scheme on a Xilinx Virtex-6 FPGA device shows that it can detect 

100% of MBUs in the configuration frames with the recovery time which is comparable to the previous schemes and 

with  only 3.3% resource occupation. 
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I. INTRODUCTION 
 

 

FPGA are silicon devices that can be electrically 

programmed in the field to become almost any kind of 

digital circuit or system. For high volume productions, 

FPGAs provide cheaper solution and faster time to market 

as compared to Application Specific Integrated Circuits 

ASIC. Also for varying requirements, a portion of FPGA 

can be partially reconfigured while the rest of an FPGA is 

still working. Any future updates in the final product can 

be easily upgraded by simply downloading a new 

application bit stream. However, flexibility is the main 

advantage of FPGAs is also the major cause of its 
drawback. Flexible nature of FPGAs makes them 

significantly slower, larger and more power consuming 

than their ASIC counterparts.  Because of the routing 

interconnect of FPGAs these disadvantages arise largely, 

which comprises of almost 90% of total area of FPGAs. 

Instead, FPGAs present a compelling alternative for digital 

system implementation due to their less time to market and 

low volume cost. The reconfigurability of an FPGA is 

based on an underlying programming technology, which 

can cause a change in behavior of a pre-fabricated chip 

after its fabrication. Normally FPGAs comprise of: 
Programmable logic blocks, which is used to implement 

the logic functions. Programmable routing that connects 

these logic functions. I/O blocks are connected to the logic 

blocks through routing interconnect and that make off-chip 

connections.    

 
Fig 1 Basic FPGA Architecture 

A generalized example of an FPGA is shown in figure 1, 

where configurable logic blocks are arranged in a two 

dimensional grid and are interconnected by programmable 

routing resources. I/O blocks are arranged at the periphery 

of the grid and they are also connected to the 

programmable routing interconnect. The “reconfigurable” 

term in FPGAs indicates their ability to implement a new 

function on the chip after its fabrication is complete. 

Different types of programming technologies are used in 

reconfigurable architectures.  
 

Each of these technologies has different characteristics 

which in turn have significant effect on the programmable 

architecture. Some of the well known technologies include 

static memory, flash and anti-fuse. SRAM-based FPGAs 
uses static memory cells as the basic cells. Most 

commercial vendors use static memory (SRAM) based on 

the programming technology of various devices. These 

devices use static memory cells which are divided 

throughout the FPGA to yield configurability. An example 

of such memory cell is shown in figure 2. 

 
Fig. 2 Static memory cell 
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 In an SRAM-based FPGA, SRAM cells are  used for to 

program the routing interconnect of FPGAs which are 

generally steered by small multiplexors. To program 

Configurable Logic Blocks which is also used to 

implement logic functions SRAM-based programming 

technology is the dominant approach used in FPGAs 

because of its re-programmability and the use of standard 

CMOS process technology and therefore leading to 

increased integration, higher speed and dynamic power 

consumption of new process with smaller geometry. There 

are number of drawbacks with SRAM-based programming 
technology. For example an SRAM cell requires 6 

transistors which make the use of this technology costly in 

terms of area compared to other programming 

technologies. Further, SRAM cells need external devices 

to permanently store the configuration data. These external 

devices add cost and area overhead of SRAM-based 

FPGAs. 

MBU PATTERNS 

In order to fairly quantify the MBU correction capability 

of the proposed scheme, need to have detailed information 

about the possible MBU patterns and its occurrence 
probabilities. In this regard, a 3-D-TCADbased neutron 

particle strike simulation is conducted by employing a 

commercial soft error assessment tool [1]. The SPICE net 

list and the memory layout as well as the radiation 

environment information are provided as inputs to the tool 

to compute the distribution of generated current pulses for 

each cell according to a nuclear database. Afterward, the 

SEU and MBU rates are extracted by injecting the 

obtained current pulses in the SPICE netlist. Using this 

commercial tool, we have acquired the occurrence 

probabilities of neutron-induced MBU patterns in the 

terrestrial environment on an SRAM memory designed for 
a 45-nm technology. In this experiment, the neutron 

energy distribution is described according to the 

JEDEC89a standard [2]. Furthermore, the secondary 

particles reaction that occur when neutrons interact with 

the atoms in the CMOS structure is modeled according to 

a nuclear database. 

FPGA CONFIGURATION FRAMES 

The configuration memory of FPGAs is organized into 

configuration frames that are the smallest addressable 

units and constitute the majority of SRAM cells in FPGAs. 

The number and the size of the configuration frames vary 
from one device to another. For example, in Xilinx Virtex-

6 XLV240T device, which is employed as a case study in 

this paper, there are 28 464 configuration frames, each 

comprising of 81 32-bit words (total of 72 049 k bit), 

whereas there are only 461 of 36 k bit BRAMs. 

Therefore, for this particular device, 81.28% of the total 

SRAM cells belong to the configuration frames. For each 

mapped design, the FPGA device utilizes only a subset of 

all the available configuration frames, which are known as 

sensitive frames. Any errors occurring in these sensitive 

frames of the device might lead to a system malfunction. 

LOW-COST MBU DETECTION 
The main idea of this paper is to exploit erasure codes to 

recover the contents of the erroneous configuration frame. 

Nevertheless, since erasure codes cannot detect errors, an 

effective detection technique is required as well. 

Therefore, each configuration frame has to be equipped 

with a low-cost error detection code. A scrubber unit 

periodically investigates the configuration frames for 

possible errors. Once an error is detected, by assuming that 

the erroneous frame is erased, its contents are recovered 

using an erasure code. Considering the fact that the entire 

configuration frame could be recovered using an erasure 

code, the identification of the exact location of erroneous 

bits is not of our interest, rather a low-cost error detection 

technique with a very high detection coverage is required. 
In this regard, we present a very efficient error detection 

coding technique called IND parity for MBU detection in 

the configuration frames. The error detection capability of 

this technique in the configuration frame for two particular 

cases where N = 2 and N = 3 is investigated in detail. In 

the proposed error detection technique, we exploit the fact 

that the sizes of large MBU patterns are typically much 

smaller than the size of a configuration frame. Since an 

MBU incident affects several bits in a localized manner, 

the bits that are located far enough cannot be 

simultaneously affected with one MBU incident. 
Therefore, having separate parities for such bits in 

configuration frames neither increases the error detection 

capability nor improves the performance, rather only 

imposes unnecessary area overhead.  

 

 IND PARITY 

In order to increase the cost-efficiency of error detection 

for the configuration frames, we introduce the idea of IND 

parity. The main idea is to use the same parity bit for the 

bits that are separated by a constant distance to minimize 

the area overhead (i.e., interleaved parity). In addition, the 

parity bits are distributed at several dimensions to increase 
the detection coverage with respect to probable MBU 

patterns as there are some MBU patterns that cannot be 

detected using one or two dimensions, no matter how 

many parity bits are employed.  

The number of parity bits in each dimension theoretically 

has to be at most equal to the largest MBU spread on that 

dimension. However, in practice, large MBU patterns are 

typically detected using the parity bits on the other 

dimensions. Consequently, the number of parity bits 

required by this technique is always smaller than this 

theoretical limit. 
 I2D PARITY 

                               

 
 

Fig. 3 Example of I2D with vertical and horizontal 

distance of 4 and 3, respectively. 
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Figure 3 shows an example of I2D coding with the 

horizontal and the vertical interleaving distance of 3 and 4, 

respectively. In the complete (traditional) 2-D parity, a 

parity bit is associated for each row (column) which is 

constructed by XOR ing  all the bits in that particular row 

(column). In the I2D parity technique, each horizontal 

(vertical) parity bit is the XOR of the bits in multiple rows 

(columns).  

 
Fig. 4 Examples of MBU patterns for comparison of 

detection capability of 2D and I2D (vertical and horizontal 

distance of 4 and 3. (a) I2D: vertical 4 and horizontal 

3.(b)Not detected by I2D;detectable by 2D 3.(c) Detected 

by both(d) Not detected by both. 

I3D PARITY 

In general, there might be some MBU patterns, which 

affect an even number of cells in each row and column. 

This kind of patterns cannot be detected by the I2D parity 

technique since parity bit can only detect an odd number 

of erroneous bits. Examples of MBU patterns, in this 

technology, with significant occurrence probabilities that 
cannot be detected by either I2D or traditional 2-D parity 

technique. In order to detect such MBUs, a more powerful 

MBU detection technique is required. In this regard, we 

propose I3D parity technique that has an additional set of 

parity bits for diagonals. 

 
 

Fig.5 Example of I3D with vertical, horizontal, and 

diagonal distance of 4, 3, and 5, respectively. 

Example of I3D with vertical, horizontal, and diagonal 

distance of 4, 3, and 5, respectively. Computation of the 

horizontal and the vertical parity bits in I3D parity follows 

the same rules explained for I2D parity. Similar to the 

interleaving technique employed in I2D parity to reduce 

the number of horizontal and vertical parity bits, in I3D 

parity, several interleaving groups are formed for the 

Diagonals as well. 

COMPARISON OF I2D AND I3D 

The number of parity bits required by I2D to reach its 

maximum detection coverage is equal to that of I3D. 

However, the error detection coverage of I2D is less than 

that of I3D. The maximum error detection coverage’s for 

various number of parity bits employed in the I2D and I3D 

parity techniques are shown in figure 5. This is obtained 
by comparing the detection coverage of all possible cases 

that result in the desired number of parity bits. The I3D 

parity always provides higher detection coverage than I2D 

parity when the number of parity bits is more than two. 

Although the I3D parity technique provides more 

detection coverage with the same number of bits, it 

occupies more logical resources on the FPGA. This is 

because more parity bits are required to be stored for the 

third dimension and the complexity of the controller unit 

increases for the generation of such additional parity bits. 

 

 
 

Fig.5 Maximum detection coverage obtained by I2D and 

I3D parity for 

different number of parity bits. 

ERASURE CODE 

Our proposed error correction scheme is based on the 

concept of erasure codes [3] [4]. An optimal erasure code 

is a data-recovery technique, were it transforms m blocks 

into m + n blocks such that the original m blocks can be 

reconstructed from any arbitrary set of m blocks among 

m+n coded blocks are shown in figure 6. 

 
Fig. 6 Encoding and Decoding Of Erasure Codes 

 

Data-recovery technique is widely implemented in storage 

devices such as hard disks and CDs,[5] error correction in 

cache array [6] [7] multimedia multicasting, and signal 

transfer protocols[8]. A variety of erasure codes with 

recovery coverage, area overhead, and complexity in 

encoding/decoding are proposed. The area overhead of an 
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erasure code is expressed as the ratio of redundant blocks 

to the data blocks (i.e., n/m). The recovery coverage of an 

erasure code is defined as the maximum number of 

erasures that could be tolerated. For the optimal erasure 

codes, the recovery coverage is equal to the number of 

redundant blocks (i.e., n). Erasure codes are not proposed 

to detect or correct errors rather to retrieve the original 

blocks when a subset of blocks is not available (i.e., 

erased). However, once an error is detected in some 

blocks, by assuming that those blocks are not available, 

the original blocks could be recovered by means of an 
erasure code. 

 RECOVERY BASED ON ERASURE CODES 

 For error detection, we propose to implement a scrubber 

unit that periodically checks the parity bits of the 

configuration frames for possible errors. Upon a detection 

of an error, by assuming that the erroneous frame is 

erased, its contents are recovered using an erasure code. 

There are plenty of erasure codes with different 

characteristics in the literature. An effective erasure code 

should be selected in the context of the error recovery for 

the configuration frames. Since soft error occurrence rate 
is relatively small and scrubbing is continuously 

performed to detect and recover possible errors, it is 

unlikely to have multiple erroneous configuration frames 

in each scrubbing iteration.  
 

In addition, the encoding time of the erasure code is not a 

major issue in this context as it is done only once in 

advance during the design mapping to the FPGA device. 
In contrast, a high decoding time prolongs the error 

recovery process. Therefore, an erasure code with one 

redundant block and short decoding time satisfies our 

requirements. In order to reduce the error recovery time, 

FPGA frames could be divided into several clusters, each 

of which has its own redundant block.  

STORING REDUNDANT DATA 

The proposed scheme generates error detection codes (InD 

parity bits) for each configuration frame and also a 

redundant erasure block for each cluster. These additional 

data have to be stored in BRAMs of the FPGA device or 
in the spare bits of the configuration frames. In case the 

parity bits are stored in BRAMs, one important concern is 

not to store parity bits of different frames from one cluster 

very close together because an MBU might affect parity 

bits of several frames in that cluster. 

  
In such a scenario, affected bits cannot be recovered as the 

number of erroneous frames is more than the available 

erasure blocks (only one erasure block for each cluster).  
A similar issue also exists for storing error-detection data 

and the erasure block of the same cluster, i.e., if an MBU 

affects both the erasure block of a cluster as well as the 

parity bits of one frame in the same cluster, the recovery is  

not possible. Considering these important issues, it is 

essential to interleave the redundant data in a way that for 

each cluster at most either error detection parity bits of one 

frame or the redundant erasure block could be affected. 

Hence, the size of the clusters has to be larger than one, to 

facilitate an interleaving distance of at least one among 

data from each cluster. 

II. CONCLUSION 

 

In this paper, a cost efficient scheme based on erasure 

codes for MBU detection and correction in the 

configuration and correction in the configuration frames of 

SRAM based FPGAs. It is implemented as a generic soft 

core along side with the user design and does not require 

any changes to the existing FPGA architecture. Comparing 

to other solutions, this scheme provides a highest level of 

MBU protection at very low costs with a negligible 

recovery time. 
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