
IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 6, June 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5622 109

Protecting Scram Based FPGA Configuration

Frames against Low Cost Multiple Bit Upsets

Ramya R.S
1
 , Sakthivel.B

2

PG Scholar, Department of ECE Coimbatore institute of engineering and technology, Coimbatore1

Assistant Professor, Department of ECE Coimbatore institute of engineering and technology, Coimbatore2

Abstract: In nanoscale technology nodes Radiation induced multiple bit upsets are the major reliability. Functionality

of the mapped design is permanently affected by the occurrence of such errors in the configuration frames of a field
programmable gate arrays. Permanent effect of these errors can be avoided by periodic configuration scrubbing

combined with a low cost error correction scheme is an efficient approach. In this paper, we present a low-cost error-

detection code to detect MBUs in configuration frames as well as a generic scrubbing scheme to reconstruct the

erroneous configuration frame based on erasure codes. The proposed scheme does not require any modification to the

FPGA architecture. Implementation of the this scheme on a Xilinx Virtex-6 FPGA device shows that it can detect

100% of MBUs in the configuration frames with the recovery time which is comparable to the previous schemes and

with only 3.3% resource occupation.

Keywords: MBU, configuration frames, erasure codes, scrubbing

I. INTRODUCTION

FPGA are silicon devices that can be electrically

programmed in the field to become almost any kind of

digital circuit or system. For high volume productions,

FPGAs provide cheaper solution and faster time to market

as compared to Application Specific Integrated Circuits

ASIC. Also for varying requirements, a portion of FPGA

can be partially reconfigured while the rest of an FPGA is

still working. Any future updates in the final product can

be easily upgraded by simply downloading a new

application bit stream. However, flexibility is the main

advantage of FPGAs is also the major cause of its
drawback. Flexible nature of FPGAs makes them

significantly slower, larger and more power consuming

than their ASIC counterparts. Because of the routing

interconnect of FPGAs these disadvantages arise largely,

which comprises of almost 90% of total area of FPGAs.

Instead, FPGAs present a compelling alternative for digital

system implementation due to their less time to market and

low volume cost. The reconfigurability of an FPGA is

based on an underlying programming technology, which

can cause a change in behavior of a pre-fabricated chip

after its fabrication. Normally FPGAs comprise of:
Programmable logic blocks, which is used to implement

the logic functions. Programmable routing that connects

these logic functions. I/O blocks are connected to the logic

blocks through routing interconnect and that make off-chip

connections.

Fig 1 Basic FPGA Architecture

A generalized example of an FPGA is shown in figure 1,

where configurable logic blocks are arranged in a two

dimensional grid and are interconnected by programmable

routing resources. I/O blocks are arranged at the periphery

of the grid and they are also connected to the

programmable routing interconnect. The “reconfigurable”

term in FPGAs indicates their ability to implement a new

function on the chip after its fabrication is complete.

Different types of programming technologies are used in

reconfigurable architectures.

Each of these technologies has different characteristics

which in turn have significant effect on the programmable

architecture. Some of the well known technologies include

static memory, flash and anti-fuse. SRAM-based FPGAs
uses static memory cells as the basic cells. Most

commercial vendors use static memory (SRAM) based on

the programming technology of various devices. These

devices use static memory cells which are divided

throughout the FPGA to yield configurability. An example

of such memory cell is shown in figure 2.

Fig. 2 Static memory cell

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 6, June 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5622 110

 In an SRAM-based FPGA, SRAM cells are used for to

program the routing interconnect of FPGAs which are

generally steered by small multiplexors. To program

Configurable Logic Blocks which is also used to

implement logic functions SRAM-based programming

technology is the dominant approach used in FPGAs

because of its re-programmability and the use of standard

CMOS process technology and therefore leading to

increased integration, higher speed and dynamic power

consumption of new process with smaller geometry. There

are number of drawbacks with SRAM-based programming
technology. For example an SRAM cell requires 6

transistors which make the use of this technology costly in

terms of area compared to other programming

technologies. Further, SRAM cells need external devices

to permanently store the configuration data. These external

devices add cost and area overhead of SRAM-based

FPGAs.

MBU PATTERNS

In order to fairly quantify the MBU correction capability

of the proposed scheme, need to have detailed information

about the possible MBU patterns and its occurrence
probabilities. In this regard, a 3-D-TCADbased neutron

particle strike simulation is conducted by employing a

commercial soft error assessment tool [1]. The SPICE net

list and the memory layout as well as the radiation

environment information are provided as inputs to the tool

to compute the distribution of generated current pulses for

each cell according to a nuclear database. Afterward, the

SEU and MBU rates are extracted by injecting the

obtained current pulses in the SPICE netlist. Using this

commercial tool, we have acquired the occurrence

probabilities of neutron-induced MBU patterns in the

terrestrial environment on an SRAM memory designed for
a 45-nm technology. In this experiment, the neutron

energy distribution is described according to the

JEDEC89a standard [2]. Furthermore, the secondary

particles reaction that occur when neutrons interact with

the atoms in the CMOS structure is modeled according to

a nuclear database.

FPGA CONFIGURATION FRAMES

The configuration memory of FPGAs is organized into

configuration frames that are the smallest addressable

units and constitute the majority of SRAM cells in FPGAs.

The number and the size of the configuration frames vary
from one device to another. For example, in Xilinx Virtex-

6 XLV240T device, which is employed as a case study in

this paper, there are 28 464 configuration frames, each

comprising of 81 32-bit words (total of 72 049 k bit),

whereas there are only 461 of 36 k bit BRAMs.

Therefore, for this particular device, 81.28% of the total

SRAM cells belong to the configuration frames. For each

mapped design, the FPGA device utilizes only a subset of

all the available configuration frames, which are known as

sensitive frames. Any errors occurring in these sensitive

frames of the device might lead to a system malfunction.

LOW-COST MBU DETECTION
The main idea of this paper is to exploit erasure codes to

recover the contents of the erroneous configuration frame.

Nevertheless, since erasure codes cannot detect errors, an

effective detection technique is required as well.

Therefore, each configuration frame has to be equipped

with a low-cost error detection code. A scrubber unit

periodically investigates the configuration frames for

possible errors. Once an error is detected, by assuming that

the erroneous frame is erased, its contents are recovered

using an erasure code. Considering the fact that the entire

configuration frame could be recovered using an erasure

code, the identification of the exact location of erroneous

bits is not of our interest, rather a low-cost error detection

technique with a very high detection coverage is required.
In this regard, we present a very efficient error detection

coding technique called IND parity for MBU detection in

the configuration frames. The error detection capability of

this technique in the configuration frame for two particular

cases where N = 2 and N = 3 is investigated in detail. In

the proposed error detection technique, we exploit the fact

that the sizes of large MBU patterns are typically much

smaller than the size of a configuration frame. Since an

MBU incident affects several bits in a localized manner,

the bits that are located far enough cannot be

simultaneously affected with one MBU incident.
Therefore, having separate parities for such bits in

configuration frames neither increases the error detection

capability nor improves the performance, rather only

imposes unnecessary area overhead.

 IND PARITY

In order to increase the cost-efficiency of error detection

for the configuration frames, we introduce the idea of IND

parity. The main idea is to use the same parity bit for the

bits that are separated by a constant distance to minimize

the area overhead (i.e., interleaved parity). In addition, the

parity bits are distributed at several dimensions to increase
the detection coverage with respect to probable MBU

patterns as there are some MBU patterns that cannot be

detected using one or two dimensions, no matter how

many parity bits are employed.

The number of parity bits in each dimension theoretically

has to be at most equal to the largest MBU spread on that

dimension. However, in practice, large MBU patterns are

typically detected using the parity bits on the other

dimensions. Consequently, the number of parity bits

required by this technique is always smaller than this

theoretical limit.
 I2D PARITY

Fig. 3 Example of I2D with vertical and horizontal

distance of 4 and 3, respectively.

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 6, June 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5622 111

Figure 3 shows an example of I2D coding with the

horizontal and the vertical interleaving distance of 3 and 4,

respectively. In the complete (traditional) 2-D parity, a

parity bit is associated for each row (column) which is

constructed by XOR ing all the bits in that particular row

(column). In the I2D parity technique, each horizontal

(vertical) parity bit is the XOR of the bits in multiple rows

(columns).

Fig. 4 Examples of MBU patterns for comparison of

detection capability of 2D and I2D (vertical and horizontal

distance of 4 and 3. (a) I2D: vertical 4 and horizontal

3.(b)Not detected by I2D;detectable by 2D 3.(c) Detected

by both(d) Not detected by both.

I3D PARITY

In general, there might be some MBU patterns, which

affect an even number of cells in each row and column.

This kind of patterns cannot be detected by the I2D parity

technique since parity bit can only detect an odd number

of erroneous bits. Examples of MBU patterns, in this

technology, with significant occurrence probabilities that
cannot be detected by either I2D or traditional 2-D parity

technique. In order to detect such MBUs, a more powerful

MBU detection technique is required. In this regard, we

propose I3D parity technique that has an additional set of

parity bits for diagonals.

Fig.5 Example of I3D with vertical, horizontal, and

diagonal distance of 4, 3, and 5, respectively.

Example of I3D with vertical, horizontal, and diagonal

distance of 4, 3, and 5, respectively. Computation of the

horizontal and the vertical parity bits in I3D parity follows

the same rules explained for I2D parity. Similar to the

interleaving technique employed in I2D parity to reduce

the number of horizontal and vertical parity bits, in I3D

parity, several interleaving groups are formed for the

Diagonals as well.

COMPARISON OF I2D AND I3D

The number of parity bits required by I2D to reach its

maximum detection coverage is equal to that of I3D.

However, the error detection coverage of I2D is less than

that of I3D. The maximum error detection coverage’s for

various number of parity bits employed in the I2D and I3D

parity techniques are shown in figure 5. This is obtained
by comparing the detection coverage of all possible cases

that result in the desired number of parity bits. The I3D

parity always provides higher detection coverage than I2D

parity when the number of parity bits is more than two.

Although the I3D parity technique provides more

detection coverage with the same number of bits, it

occupies more logical resources on the FPGA. This is

because more parity bits are required to be stored for the

third dimension and the complexity of the controller unit

increases for the generation of such additional parity bits.

Fig.5 Maximum detection coverage obtained by I2D and

I3D parity for

different number of parity bits.

ERASURE CODE

Our proposed error correction scheme is based on the

concept of erasure codes [3] [4]. An optimal erasure code

is a data-recovery technique, were it transforms m blocks

into m + n blocks such that the original m blocks can be

reconstructed from any arbitrary set of m blocks among

m+n coded blocks are shown in figure 6.

Fig. 6 Encoding and Decoding Of Erasure Codes

Data-recovery technique is widely implemented in storage

devices such as hard disks and CDs,[5] error correction in

cache array [6] [7] multimedia multicasting, and signal

transfer protocols[8]. A variety of erasure codes with

recovery coverage, area overhead, and complexity in

encoding/decoding are proposed. The area overhead of an

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 6, June 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5622 112

erasure code is expressed as the ratio of redundant blocks

to the data blocks (i.e., n/m). The recovery coverage of an

erasure code is defined as the maximum number of

erasures that could be tolerated. For the optimal erasure

codes, the recovery coverage is equal to the number of

redundant blocks (i.e., n). Erasure codes are not proposed

to detect or correct errors rather to retrieve the original

blocks when a subset of blocks is not available (i.e.,

erased). However, once an error is detected in some

blocks, by assuming that those blocks are not available,

the original blocks could be recovered by means of an
erasure code.

 RECOVERY BASED ON ERASURE CODES

 For error detection, we propose to implement a scrubber

unit that periodically checks the parity bits of the

configuration frames for possible errors. Upon a detection

of an error, by assuming that the erroneous frame is

erased, its contents are recovered using an erasure code.

There are plenty of erasure codes with different

characteristics in the literature. An effective erasure code

should be selected in the context of the error recovery for

the configuration frames. Since soft error occurrence rate
is relatively small and scrubbing is continuously

performed to detect and recover possible errors, it is

unlikely to have multiple erroneous configuration frames

in each scrubbing iteration.

In addition, the encoding time of the erasure code is not a

major issue in this context as it is done only once in

advance during the design mapping to the FPGA device.
In contrast, a high decoding time prolongs the error

recovery process. Therefore, an erasure code with one

redundant block and short decoding time satisfies our

requirements. In order to reduce the error recovery time,

FPGA frames could be divided into several clusters, each

of which has its own redundant block.

STORING REDUNDANT DATA

The proposed scheme generates error detection codes (InD

parity bits) for each configuration frame and also a

redundant erasure block for each cluster. These additional

data have to be stored in BRAMs of the FPGA device or
in the spare bits of the configuration frames. In case the

parity bits are stored in BRAMs, one important concern is

not to store parity bits of different frames from one cluster

very close together because an MBU might affect parity

bits of several frames in that cluster.

In such a scenario, affected bits cannot be recovered as the

number of erroneous frames is more than the available

erasure blocks (only one erasure block for each cluster).
A similar issue also exists for storing error-detection data

and the erasure block of the same cluster, i.e., if an MBU

affects both the erasure block of a cluster as well as the

parity bits of one frame in the same cluster, the recovery is

not possible. Considering these important issues, it is

essential to interleave the redundant data in a way that for

each cluster at most either error detection parity bits of one

frame or the redundant erasure block could be affected.

Hence, the size of the clusters has to be larger than one, to

facilitate an interleaving distance of at least one among

data from each cluster.

II. CONCLUSION

In this paper, a cost efficient scheme based on erasure

codes for MBU detection and correction in the

configuration and correction in the configuration frames of

SRAM based FPGAs. It is implemented as a generic soft

core along side with the user design and does not require

any changes to the existing FPGA architecture. Comparing

to other solutions, this scheme provides a highest level of

MBU protection at very low costs with a negligible

recovery time.

III. REFERENCES

[1] E. Costenaro, D. Alexandrescu, K. Belhaddad, and M. Nicolaidis,

“A practical approach to single event transient analysis for highly

complex design,” J. Electron. Test., vol. 29, no. 3, pp. 301–315,

2013.

[2] JEDEC89C Standard, document JEDEC89C. [Online].

Available:http://www.jedec.org/standards-documents, accessed Apr.

2015.

[3] J. S. Plank, “Erasure codes for storage applications,” in Proc. 4th

Usenix Conf. File Storage Technol., 2005, pp. 1–74.

[4] L. Rizzo, “Effective erasure codes for reliable computer

communication protocols,” ACM SIGCOMM Comput. Commun.

Rev., vol. 27, no. 2, pp. 24–36, 1997.

[5] J. S. Plank and M. G. Thomason, “A practical analysis of low-

density parity-check erasure codes for wide-area storage

applications,” in Proc. IEEE Int. Conf. Dependable Syst. Netw.,

Jun./Jul. 2004, pp. 115–124.

[6] A. BanaiyanMofrad, M. Ebrahimi, F. Oboril, M. B. Tahoori, and N.

Dutt, “Protecting caches against multiple bit upsets using embedded

erasure coding,” in Proc. Eur. Test Symp. (ETS), 2014.

[7] J. Kim, N. Hardavellas, K. Mai, B. Falsafi, and J. C. Hoe, “Multi-bit

error tolerant caches using two-dimensional error coding,” in Proc.

40
th
 Annu. IEEE/ACM Int. Symp. Microarchitecture, Dec. 2007, pp.

197–209.

[8] J. M. Park, E. K. P. Chong, and H. J. Siegel, “Efficient multicast

stream authentication using erasure codes,” ACM Trans. Inf. Syst.

Secur., vol. 6, no. 2, pp. 258–285, 2003.

